MAINTENANCE MANUAL

Operating Instruction

Oiling Requirements

and Parts List

for

LATHES, Bench, Precision, 1" Collet Capacity, 3½ foot Bed

LATHES, Bench, 10" x 4½' Bed, 110 V., 60 Cycle, Single Phase, with Steel Bench

and

LATHES, 10", with Bench, 3½ foot Bed

SHELDON MACHINE COMPANY, Inc.

Chicago • Illinois

U. S. A.
HEADSTOCK (See Fig. 1-4 inclusive)

The headstock (S-71A) which is secured to the lathe bed, houses the driving mechanism of the lathe... back gears and spindle. In order to reach all essential headstock parts, first loosen the two thumb screws (S-49) in top cover casting (M-442) and lift cover, exposing the spindle and gears. (see fig. 2)

(S-452) is the double "V" belt sheave to which the "V" belts are engaged for driving the lathe. (K-68) is the large back gear. Engaging the large back gear is the small face gear (S-467). (S-67) is the small back gear or back gear pinion and sleeve. Directly in front of the small back gear is the spindle face gear (K-443) which turns the lathe spindle. When direct belt drive is desired the face gear is affixed to the "V" belt sheave by bushing in the face gear pull pin (K-38) so that the spindle revolves directly with the sheave from the belt.
BACK GEARS (See Fig. 2)

To engage the back gears, (1st) be sure that motor switch is in off position, (2nd) Revolve “V” belt sheave by hand until face gear pull pin is within easy reach of the right hand, (3rd) Pull the pull pin all the way out so that the “V” belt sheave revolves freely in the spindle. Be sure the pull pin is all the way out, then the pull pin spring will keep it in that position. (4th) Pull out back gear plunger pin (K-547) and bring back gear handle (M-69) forward until large back gear engages the small face gear. A slight manipulation may be necessary to fully engage these gears. Be sure that back gear plunger pin engages plunger hole to secure this gear position. Lathe is now ready for back gear operation.

When reversing the above procedure, for transmitting into direct belt drive, be sure back gear plunger pin is engaged in “open” position, and also be sure that face gear pull pin is thoroughly engaged in one of the two holes in the “V” belt sheave. To engage the face gear pull pin, press pin while at the same time revolving the “V” belt sheave by hand until the pull pin snaps into position.

WARNING: Never attempt to engage back gears while lathe is in operation. Never attempt to operate lathe with both face gear pull pin and back gears engaged.

HEADSTOCK SPINDLE (See Fig. 2 and 3)

The angle of taper in the front end of spindle corresponds to that of the No. 5 M.T. The hole in the center sleeve (KB-465) is a No. 2 M.T. Be sure when inserting either the sleeve into the spindle, or the center into the center sleeve that the holes are thoroughly cleaned. A small particle of dust or dirt may cause a run-out at the spindle nose.

REVERSE PLATE CHART for direction of drive with relation to the position of reverse plate.

<table>
<thead>
<tr>
<th>Position of Reverse Plate Handle (K-248)</th>
<th>Dir. of Lead Screw</th>
<th>Dir. of Long. Power Feed</th>
<th>Dir. of Power Cross Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Same as Spindle</td>
<td>Toward Headstock (left)</td>
<td>Toward Work (in)</td>
</tr>
<tr>
<td>Neutral</td>
<td>Stationary</td>
<td>Stationary</td>
<td>Stationary</td>
</tr>
<tr>
<td>Down</td>
<td>Reverse of Spindle</td>
<td>Away from Tailstock (right)</td>
<td>Work (out)</td>
</tr>
</tbody>
</table>

Note: Above applies when motor switch is in “Forward” Position. Reversing motor, reverses the direction. Be certain when engaging reverse plate handle that plunger pin drops into place. Shift reverse handle only when lathe is in relatively slow speed.

GEAR BOX (See Fig. 2)

The quick change gear box is used for obtaining various feeds through the friction clutch and various thread cutting ranges. To cut a desired thread cutting pitch, the following levers are involved: (a) reverse plate lever or handle (K-248), (b) end lever or quadrant lever (S-749), (c) shifter lever or top lever (K-727) and (d) tumbler lever (K-734).

(a) Reverse Plate Lever: For right hand threads and feeds, place lever in “up” position. For left hand threads and feeds, place lever in “down” position.

(b) End Lever: The position of the end lever is indicated in the thread cutting chart directly mounted on the face of the gear box. For thread cutting range of 4 to 28 T.P.I., place lever in “up” position; for range of 32 to 224 T.P.I., place lever in “down” position. To move end lever, loosen nut (Z) with open end of tool post wrench (S-2115), adjust lever to correct position, making certain that gears are enmeshed, then tighten nut. An adjustable set screw arrangement is provided from limiting the movement of the end lever in the direction “up” or “down” (see illustration). This is adjusted correctly at the factory, but may require further adjustment due to jolts received during transit.

(c) Shifter Lever: (Indicated on chart as top lever) the correct positioning of the shifter lever is indicated on the chart as (A) fast, (B) medium and (C) slow. The shifter lever is easier to operate while lathe is in motion, for while lathe is stationary, gears will not mesh easily.

(d) Tumbler Lever: Manipulate tumbler lever by pulling knurled knob out and moving the lever lengthwise to the correct hole, as indicated by the chart directly above it. Be certain to properly engage pull pin in correct hole. The tumbler lever is best operated while the lathe is in motion.

Example: To cut 11½ threads per inch (R.H.), place reverse plate lever in “up” position; place end lever in “up” position; place top lever in “B” position, and place tumbler lever in
5th hole from left, corresponding to the chart above the hole. When half-nuts are now engaged with lead screw, tool will cut 11½ threads per inch (T.P.I.). At the same time if the automatic friction clutch is engaged instead of the half-nuts, a longitudinal feed of .0089 inches per R.P.M. of spindle will result. The automatic cross feed in this position will be .0083 inches per R.P.M. of spindle, or .933 x .0089 (as indicated at extreme right of chart). The extreme slow feeds and the extreme fast feeds are not indicated on the chart because such feeds are not practical.

**END GEARING (See Fig. 2)**

To remove gear guard to facilitate removal of end gearing, unlatch the catch and the pull pin at front of guard, then lift out hinge pin at rear (X). Gear guard may then be lifted off easily.

To transverse end gearing for cutting metric system threads, (1st) remove nut and washer (Y) with wrench S-2115. (2nd) Remove 96 T-gear and spacer washer and 32 T-gear, taking care not to lose the Woodruff keys. (3rd) Remove nut and washer (Z) using same wrench. (4th) Remove complete quadrant assembly and replace with metric quadrant assembly. (5th) Replace nut and washer (Z). (6th) Replace 32 T-gear and washer as spacer. (see fig. 4 for end gearing mounted with metric quadrant) (7th) Refer to chart on inside of end gear guard for proper gear to use in place of the original 96 T-gear (gear on box) placing this gear in position and replacing nut and washer (Y). (8th) Refer to chart for proper gears to interchange with the stud gear and the compound gear in order to cut the various metric threads.

**EXAMPLE:** To arrange gearing for cutting 2.250 pitch, (1st) after replacing English quadrant with Metric quadrant, the original 96 T-gear is replaced by the 44 T-gear; (2nd) the 127 T and 110 T-gears remain on the quadrant; (3rd) the 36 T-gear is placed on the stud. (4th) Engage the 127 T and the 36 T-gears by lowering the end lever of the quadrant to a position which results in proper mesh, then tighten nut (Z). (5th) Place shifter lever or top lever in position "B". (6th) Engage tumbler lever in extreme left position. In this position, the lathe would operate a longitudinal feed of .229 m m per R.P.M. of spindle and a cross feed of .214 m m per R.P.M. of spindle.

**APRON (See Figs. 1, 5 and 6)**

The apron houses the feeding mechanism of the lathe. Handwheel (E-197) is for operation of longitudinal feed by hand. Clockwise rotation moves carriage to the right, counter-clockwise to the left. Do not attempt to manipulate handwheel while friction clutch is operating on longitudinal feed.

**CARRIAGE (See Figs. 1 and 7)**

The ball crank (K-852) operates the manual cross feed of the carriage. Feed into work with clockwise movement; back away from work with counter-clockwise movement. Do not manipulate the ball crank while lathe is operating on power cross feed; it is for manual feed only.

The micrometer collar (TT-126) is graduated in increments of .001 inches to indicate the depth of the cut. Remember that the resulting diameter is decreased by twice that of the depth of the cut. The collar may be zeroed at any desirable point by use of the set screw (K-458).
The adjustable cross slide gib (TT-211-b) has been perfectly fitted at the factory and should require no further adjustment. Through misuse or damage, however, the bearing surfaces of the cross slide gib may become ill-fitting, resulting in chatter and inaccuracies in the work of the lathe. If such is the case, be extremely careful in making the proper adjustment of the gib, for the accuracy of the lathe depends a good deal upon the fit of this gib. To adjust the lock-nuts and set screws (L-635) use proper fitting wrench on lock-nut, at the same time using screw-driver on set screw. Loosen lock nut, move set screw very slightly then tighten lock nut before moving to the next nut. Repeat the procedure until proper adjustment is secured.

On facing off operations, be sure to tighten the binding block screw (K-121). It secures carriage to bed at any desired point. Be sure to loosen this screw before operating carriage along the bed.

At which any graduation aligns with the "zero" mark. When cutting odd threads (an odd number of threads per inch), the half-nuts can be re-engaged as any numbered graduation aligns with the "zero" mark. When cutting half threads such as 4½, 5½, 11½, etc. threads per inch, the half-nuts can be re-engaged as any odd (1 or 3) number graduation aligns with the "zero" mark.

WARNING: When not using thread chasing dial, loosen nut (B) (Fig. 1) and let dial hang freely, not engaging the lead-screw. This will eliminate undue wear of the worm screw in the dial.

**THREAD CHASING DIAL (See Figs. 1 and 8)**

The thread chasing dial is attached to the right hand end of the lathe carriage and is actuated by the lead screw. The thread chasing dial indicates accurately the point at which to engage the double half-nuts on the lead screw for successive cuts. With a thread chasing dial it is not necessary to return the tool to the starting point of the cut by reversing the motor and waiting for the tool to return to the starting point. With a thread chasing dial, the operator can, at the finish of each cut, disengage the split nut and return the carriage to the starting point quickly with the hand wheel because the thread chasing dial shows the exact point at which to engage the double half-nuts to bring the tool accurately into the groove for the next cut.

The face of the thread chasing dial is graduated and numbered into divisions. This dial is revolved by the lead screw so that each graduation passes a zeroing point on the stationary part of the dial housing. When cutting even threads (an even number per inch), the half-nuts can be engaged at the point

**COMPOUND (See Figs. 1 and 9)**

The compound ball crank (L-836) functions in the same manner as the carriage ball crank except that it controls the angular feed of the compound rest. The limit of the angular feed of the cross slide of the compound is 2½ inches. The instructions pertaining to the cross slide gib (found under "carriage" copy) apply also to the compound rest gib (S-136). The compound rotates upon a circular base (360°) (See B) completely calibrated in degrees, 90° to the right, 90° to the left.

To set the compound at any desired angle, loosen the binding bolts (K-134) (Fig. 1), rotate compound right or left until the desired calibration mark appears above zero line, then tighten the bolts. Be sure bolts are securely fastened, eliminating any possible chance for chatter.

**TOOL POST (See Fig. 1)**

The tool post is equipped with rocker (c) for adjustment of proper height of tool. Be sure to securely tighten tool post screw (S-451) (Fig. 1) after properly setting tool holder.
TAPER ATTACHMENT (See Figs. 1 and 10)

The taper attachment is the telescopic type, which eliminates the necessity of disconnecting the cross feed nut before cutting tapers. The right end of the swivel plate (TT-218) is calibrated in inches per foot of taper and the left end in degrees of taper. To arrange taper attachment for turning taper: (1st) loosen swivel binding screws (TT-213) and adjust swivel plate to desired degree or inch per foot of taper by aligning the proper calibrated mark on the end of the plate with the zero line on the face of the lower slide, then tighten binding screws. (2nd) Place carriage at proper position on the bed, with respect to the work, and tighten slide lock binding screws (TT-212). (3rd) Tighten taper attachment lock plate handle (K-570) with a firm twist, clockwise. Lathe is now ready to turn taper. After completing taper turning, be sure to loosen binding screws (TT-212), lock plate handle (K-570), and return swivel plate to exact center position before attempting to do regular turning operation.

TAILSTOCK (Figs. 1 and 11)

To move tailstock along lathe bed, loosen hex nut (D) with wrench provided. Tailstock may then be moved along bed to desired position. Before operating lathe for work between centers be sure to fasten nut (D) securely.

The handwheel (L-215) operates the movement of the tailstock spindle (K-75) which is calibrated in \( \frac{1}{16} \)th of an inch. The hole in the end of spindle takes a No. 2 M.T. center. To eject center, turn handwheel counter-clockwise until spindle is fully retracted; center may then be easily removed. Before replacing center, thoroughly clean the center and the hole in the spindle.

To secure the tailstock spindle in any desired position, turn spindle clamp handle (K-570 T) clockwise with a firm twist. Be sure to loosen the handle before attempting to operate handwheel (L-215).

To adjust set-over of tailstock in a horizontal plane, adjust bolts “EE” in the following manner: for adjustment toward the operator, loosen front bolt and tighten rear bolt until proper set over is reached as indicated by calibrations in the set over scale at “F”. For adjustment away from the operator, reverse the procedure by loosening the rear bolt and tightening the front bolt until proper set over is reached. Be sure to tighten both bolts before proceeding with work. The set over scale is calibrated in \( \frac{1}{16} \)th of an inch. The large letters, or figures appearing on the scale have no reference to the calibrations, merely indicating in code the matching of tailstock with the headstock. Tailstock is perfectly aligned with headstock at the factory and the zero line stamped on the scale is the true center position of the tailstock. Consequently, the tailstock should be brought back to align this mark with the O on the scale before attempting to mount work between centers.

SWITCH and CONTROL (See Fig. 1)

Just above and behind the headstock is the start, stop, reverse switch as well as reset control box. If reset control should kick off for any reason (sudden high or low voltage or undue strain on motor), shut off switch for approximately three minutes until motor is cool. Then push reset button and start motor. If not effective shut off switch again and wait a few minutes longer, then repeat operation.

UNDERNEATH MOTOR DRIVE (See Figs. 12 and 13)

To change spindle speeds: 1st be sure motor is off, then raise eccentric lever (E-911) to uppermost position, releasing tension on countershaft belt. Move belt to desired position on matching 4-step sheaves and lower the lever. Refer to chart on top of end gear guard or ranges of spindle speeds. Lowest speed results when belt is in far left grooves; highest when in far right grooves. To increase tension of motor belt, loosen nuts “A” and tighten nuts “B”. Reverse procedure for releasing tension on motor belt. To increase permanent tension of countershaft belt, loosen nut “C”. Reverse procedure for releasing permanent tension. To increase tension of spindle drive belt, loosen nuts “D” and tighten nuts “E”. Reverse procedure for releasing tension.

Motor is \( \frac{3}{4} \) H. P., 110 V., 60 cycles, single phase, capacitor type. Under the motor is a supporting bracket, the purpose of which is to brace the motor and underdrive unit while truck is in transit. For proper operating of drive unit while lathe is in operation, release the tension on the support by throwing lever arm “F” upward and to the left thereby dropping motor base to running position. Be sure to raise support when lathe is not in use.

Note: On wooden bench models the motor support consists of a bracket floating on 4 springs (see illustration), and does not require adjustment until such time as belts stretch. It will then be necessary only to lower the support by means of the nuts “A”. (Fig. 13)
BENCH (See Figs. 14, 15 and 16)

All drawers lock with same key. Each drawer has wooden liner unit or insert with cut-outs in which to set related groupings of tools and attachments.

Fig. 14

**Drawer No. 1, Liner Unit No. 1, provides space for:**
(1 ea.) Metric quadrant complete with 110T and 127T gears.
(17 ea.) Change gears as follows: 18T, 20T, 22T, 24T, 26T, 28T, 30T, 32T, 36T, 40T, 44T, 48T, 52T, 56T, 80T, 44T, 80T.

**Drawer No. 2, Liner Unit No. 2 provides space for:**
(1 ea.) Straight turning tool holder with wrench.
(1 ea.) L. H. turning tool holder with wrench.
(1 ea.) R. H. Turning tool holder with wrench.
(1 ea.) Straight cutting off tool holder with wrench.
(1 ea.) L. H. cutting off tool holder with wrench.
(1 ea.) R. H. cutting off tool holder with wrench.
(1 ea.) Boring tool holder. Straight with 45 degree angle cutter with wrench.
(1 ea.) Knurling tool with 3 sets of knurls, Course, Medium, Fine, Diamond.

**Drawer No. 3, Liner Unit No. 2 provides space for:**
(1 ea.) 3 jaw drill chuck, 0-½ capacity with No. 2 M. T. arbor.
(1 ea.) Drill chuck key.
(1 ea.) Tool post wrench No. S-2115.

**Drawer No. 4, Liner Unit No. 4 provides space for:**
(4 ea.) Lathe dogs, bent tail, as follows: ½, ¾, 1, and 1½".
(1 ea.) Clamp lathe dog, maximum opening 1½".
(1 ea.) Pipe center ½"-3" cap.
(1 ea.) Tailstock wrench.
(1 ea.) Large face plate, 8½" diameter.
(1 ea.) Small face plate, 5½" diameter.

**Drawer No. 5, Liner Unit No. 5 provides space for:**
(1 ea.) Follower rest with two cast iron jaws.
(1 ea.) Center rest with three cast iron jaws.
(1 ea.) Crank for milling attachment.
(1 ea.) Large chuck wrench.
(1 ea.) Small chuck wrench.
(1 ea.) Set of chuck jaws. (Packed with chucks)

**Accessories Box, mounted behind lathe, on top of bench, provides space for:**
(1 ea.) 6" Three jaw Universal chuck, fitted with two sets of jaws.
(1 ea.) 6" Four jaw Independent chuck fitted.
(1 ea.) Milling and keyway cutting attachment.
**OILING INSTRUCTIONS**

for SHELDON Lathes, 10” Swing, 1” Collet Capacity

---

**Fig. 1**

1. Fill the two oil cups above the spindle bearings. Keep full at all times, (Fig. 4.)

2. Turn back gears until oil button in middle of back gear shaft is exposed, then with pressure oil can, pump enclosed oil reservoir full of oil through this button, (Fig. 4.)

3. Squirt a few "shots" of oil into the thrust bearing located inside of the left spindle bearing, (Fig. 4.)

4. Turn double V-belt sheave until set screw is exposed. Remove set screw and pump considerable oil into the opening, then replace the set screw, (Fig. 4.)

5. Swing open the gear guard so that the end gearing is exposed. All gears have an oil hole drilled in the hub or the stud. Oil each of these, then put a few drops of oil on the teeth of all gears, (Fig. 4.)

6. Fill the two oil cups on the left side of the quick change gear box housing, (Fig. 4.)

7. Fill the two oil cups on the right side of the quick change gear box housing, (Fig. 1.)

8. Remove the cover of the quick change gear box and fill the four oil holes lubricating the shafts. Put oil on all the gears, (Fig. 17.)

9. Fill the oil cup on the reversing lever, (Fig. 4.)

10. Next, run the carriage as far back as possible, then put oil on the V-ways and flat ways. Run the carriage to the extreme right and repeat, (Fig. 1)

11. Force oil into the oil button directly inside of the microm-
12. Put a few drops of oil on the cross feed screw, (Fig. 1 and Fig. 7.)

13. Put a few drops of oil along the cross feed ways, (Fig. 1 and Fig. 7.)

14. Force oil into the oil button behind the micrometer indexing collar of the compound, (Fig. 1 and Fig. 9.)

15. Put a few drops of oil on the compound feed screw. This can be done by backing the compound and reaching the screw from the under side, (Fig. 1 and Fig. 9.)

16. Put a few drops of oil on the compound slide, (Fig. 1 and Fig. 9.)

17. Force oil into the oil button of the taper attachment clamp plate, (Fig. 1 and Fig. 10.)

18. Put a few drops of oil on the swivel, (Fig. 1 and Fig. 10.)

19. Put a few drops of oil on the rear flat-way on either side of the slide lock bracket, (Fig. 1.)

20. Force plenty of oil into the oil button on the tailstock at the top left end, (Fig. 1 and Fig. 11.)

21. Fill the oil hole in the tailstock handwheel bushing (Fig. 1 and Fig. 11.)

22. Force oil into the bottom at the base of the half-nut lever, (Fig. 1 and Fig. 5.)

23. Force oil into the oil button at the base of the apron quadrant lever, (Fig. 1 and Fig. 5.)

24. Force oil into the oil button at the top of the clutch feed lever, (Fig. 1 and Fig. 5.)

25. Force oil into the oil button at the upper left of the apron behind the handwheel, (Fig. 1 and Fig. 5.)

26. Large oil cup at base of apron, to the left of the clutch, is over-flow point for maintaining proper oil level in apron sump, (Fig. 5.)

27. Fill the oil cup at the extreme left end of the apron, at the top, (Fig. 5.)

28. Force oil into the oil button at the hub of the handwheel, (Fig. 5.)

29. Pour plenty of oil into the oil duct opening at the top of the apron, to the right of the apron quadrant lever, (Fig. 5.)

30. Force oil into the oil button at the top of the apron, just above and slightly to the left of the quadrant lever, (Fig. 5.)

31. Fill the oil hole at the top of the thread dial indicator, (Fig. 1.)

32. Force oil into the oil button in the lead screw supporting bracket, at the right end of the lead, (Fig. 1.)

33. Using the grease gun furnished with the lathe, thoroughly grease the four points in the underdrive unit where grease cups appear . . . two on each shaft, (Fig. 12 and Fig. 13.)

34. Other moving parts of the underdrive may be oiled at will.
PARTS LIST
for Lathe, Bench, SHELDON, 10 x 56 Inch

APRON, assembly, composed of:
- SHD-K-549 BLOCK
- SHD-K-555 BODY
- SHD-K-14 BUSHING
- SHD-K-533 BUSHING
- SHD-K-537-B CAM, assembly
- SHD-K-551 ECCENTRIC
- SHD-K-12 GEAR
- SHD-K-18 GEAR
- SHD-K-23 GEAR
- SHD-K-11 GEAR
- SHD-K-24 HANDLE
- SHD-K-248 HANDLE
- SHD-E-197 HANDWHEEL
- SHD-K-15 KNOB
- SHD-K-534 LATCH
- SHD-K-548 LEVER
- SHD-L-10 LEVER
- SHD-K-535 LINK
- SHD-K-539 NUT
- SHD-K-19 PINION
- SHD-K-532 PINION
- SHD-K-194 PLATE
- SHD-K-552 PLATE
- SHD-K-547-C PLUNGER, assembly
- SHD-LK-522 SCREW
- SHD-K-13 SHAFT
- SHD-K-542 SHAFT
- SHD-K-1005 SHAFT
- SHD-K-863 SPRING
- SHD-K-550 SPRING
- SHD-K-538 STUD
- SHD-K-553 STUD
- SHD-K-93 WASHER (2)
- SHD-K-3 WORM
- CCA1C BALL
- BGAX5A KEY
- BGAX8A KEY
- BBCX1B NUT
- BBCX1C NUT (3)
- BFDX4AM PIN
- BFDX2.1BK PIN
- BFDX2.1BM PIN
- BFDX2.1DM PIN (2)
- PIN, (2) escutcheon, hv., S., 0.08 x ¾
- BFCX1DE PIN (2)
- BFCX1FF PIN
- BCA1C SCREW (7)
- BCNX2CK SCREW
  SCREW, set, socket-hd., rd-pt., alloy-S., 5/16-18NC-3 x 5/16

SHD-TT-229 ROD
SHD-TT-219 SADDLE
SHD-L-635 SCREW (7)
SHD-TT-213 SCREW (2)
SHD-TT-215 SLIDE
SHD-TT-218 SWIVEL
SHD-K-93 WASHER (2)
BBDX2B NUT (3)
BFCX1ED PIN (3)
BCA1C SCREW (2)
BCFX2DG SCREW (2)

SHD-TT-229 ROD
SHD-TT-219 SADDLE
SHD-L-635 SCREW (7)
SHD-TT-213 SCREW (2)
SHD-TT-215 SLIDE
SHD-TT-218 SWIVEL
SHD-K-93 WASHER (2)
BBDX2B NUT (3)
BFCX1ED PIN (3)
BCA1C SCREW (2)
BCFX2DG SCREW (2)
SCREW, set, hdls., dog-pt., S., ¼-28NF-2 x ¾
WASHER, lock (2), external teeth, reg., S., ¾ in.
SKF-6204Z BEARING, ball, No. 204 (annular, single row, light-series, 0.7874 bore, 1.8504 O.D., 0.5512 width)
SHD-K-144 BED, 56 in.
SHD-K-143 BED, 44 in.
GV-3270 BELT, "V", four step sheave
GV-3520 BELT, "V", headstock spindle drive (2), for Steel Bench Model
GV-3550 BELT, "V", headstock spindle drive (2), for Wooden Bench Model
GV-2405 BELT, "V", motor to countershaft

BODY, tumbler, assembly, composed of:
- SHD-K-734 BODY
- SHD-K-737 GEAR
- SHD-K-807 PIN
- SHD-K-89 SHAFT

BOXX, gear, quick-change, assembly, composed of:
- SHD-K-734-C BODY, assembly
- SHD-K-700 BODY
- SHD-K-701 BUSHING
- SHD-S-7600 CHART
- SHD-K-703 COLLAR
- SHD-K-738 COVER
- SHD-S-86 GEAR, sleeve, cluster, assembly
- SHD-K-713-B GEAR, sliding, assembly
- SHD-K-713-C GEAR, stationary, assembly
- SHD-K-735 GEAR
- SHD-L-827 HANDLE
- SHD-K-716 KEY
- SHD-K-727-B LEVER, shifter, assembly
- SHD-K-734-B LEVER, tumbler, assembly
- SHD-K-732 SCREW
- SHD-K-1037 SHAFT
- SHD-K-1036 SHAFT
- SHD-K-726 SHAFT
- SHD-K-159 SPRING
- SHD-K-93 WASHER (2)
- SHD-K-742 YOKE
- CCA1C BALL
- BGAX5A KEY (2)
- BBCX1C NUT (2)
- PIN, escutcheon, S., hv., 0.08 x ¾
- BFCX1DE PIN (5)
- BCA1B SCREW

ATTACHMENT, taper, assembly, composed of:
- SHD-TT-210 BRACKET
- SHD-KT-217 CLAMP
- SHD-TT-217 GIB
- SHD-TT-220 GIB
- SHD-TT-216 LOCK
- SHD-L-636 NUT (7)
- SHD-TT-781 NUT
- SHD-TT-221 PIN
SHELDON MACHINE COMPANY, INC.  CHICAGO, ILLINOIS

BBCM18A  SCREW (2)
          SCREW, set, 5/16-18NC-2 x 5/16
BCTX2K  SCREW
FAAX1F  SPRING
          WASHER (3), lock, external teeth, reg., S., 5/16 in.

BRACKET, gear guard, lower, group assembly, composed of:

SHD-LP-189  BODY
SHD-S-81  CHAIN w/RING assembly
SHD-S-69  PIN
          PLATE, clamp, ⅞ x 1⅛ x 2
BCAX1CE  SCREW
          SCREW, cap, hex-hd., 5/16-18NC-2 x 1
          THUMBSCREW, plain, ⅛-16NC-2 x ¾
          WASHER, lock, external teeth, reg., S., 5/16 in.
          WASHER, lock, external teeth, reg., S., ¾ in.

BRACKET, reverse, assembly, composed of:

SHD-S-63  BODY
SHD-S-58  BUSHING (2)
GTS-#301  COVER
          FELT (2), oiling, ¼ x ½
SHD-L-815  GEAR
SHD-S-747  GEAR
SHD-K-744  GEAR
SHD-K-745  GEAR
SHD-K-248  HANDLE
SHD-L-76  LEVER
SHD-L-82  PIN
SHD-S-31  PLATE
SHD-S-746-C  SHAFT
SHD-L-206  SHAFT
SHD-L-83  SPRING
SHD-S-62  STUD (2)
SHD-S-702  STUD
SHD-K-93  WASHER
BGAX5A  KEY (2) (for SHD-S-746-C)
BBBC1C  NUT (5)
Q83MN  SCREW
BECX1K  WASHER

CAM, half-nut, assembly, composed of:

SHD-K-537  CAM
BFCX1DE  PIN
BFDX2.1BM  PIN

CARRIAGE, assembly, composed of:

SHD-K-120  BLOCK
SHD-K-119  BODY
SHD-TT-684  BRACKET
SHD-TT-125  BUSHING
SHD-TT-228  BUSHING
SHD-K-122  CLAMP
SHD-K-457  CLAMP
SHD-TT-130  COLLAR
SHD-TT-126  COLLAR
GTS-#521  COVER (for (2) SHD-TT-125 and SHD-TT-128)
SHD-K-852  CRANK
SHD-TT-211-L  GIB
SHD-K-570  HANDLE
SHD-L-636  NUT (6)
SHD-TT-124  PINION

SHD-TT-128  PLATE
SHD-TT-1034  PLATE
SHD-TT-127  PLATE
SHD-L-853  PLUNGER
SHD-LK-489  RETAINER, (2) w/SCREW BCNX1FG
SHD-LK-487  RETAINER, (2) w/SCREW BCNX1FE
SHD-K-121  SCREW
SHD-TT-830-G  SCREW, cross feed, carriage, group assembly
SHD-K-458  SCREW
SHD-L-635  SCREW (6)
SHD-L-991  SCREW
SHD-K-584  STUD (2)
BGAX5A  KEY
BBBC1B  NUT
BFCX1ED  PIN
BECX1CB  SCREW
BECX1CC  SCREW (4)
BECX1CF  SCREW (2)
          SCREW, (2) mach., oval-fill-hd., S., ⅛-
          20NC-2 x ¾
          SCREW, set, hdls., fl-pit., S., No. 8—
          32NC-3 x ¼
          WASHER, (2) lock, external teeth, reg.,
          S., 5/16 in.
          WASHER, (4) lock, external teeth reg.,
          S., ¾ in.
          CATCH, w/ strike (Corbin Steel Co.,
          #15641)
SHD-S-81  CHAIN, assembly w/ring
SHD-S-426  CHART, metric thd., transposing
SHD-S-7600  CHART, thread cutting
          CONDUIT, metallic, flex., S., sgle-strip,
          glvd., ½ in.
          CONNECTOR, elec., met. tube, stgth.,
          w/L-NUT, 1 in. (G.E., BM Austin
          Briegel No. BM-23)
          CONNECTOR, flexible metallic conduit,
          ½ in., w/L-NUT

COVER, headstock, assembly, composed of:

SHD-M-628  COVER
SHD-S-48  STUD (2)
BMUX1  RIVET
SHD-S-49  THUMBSCREW (2)

DIAL, thread, chasing, assembly, composed of:

SHD-K-890  BODY
SHD-K-892  DIAL
SHD-K-891  SHAFT
SHD-K-192  WHEEL
BFCX1BD  PIN

DRIVE, compound countershaft, assembly, composed of:

SHD-E-969  BASE
SHD-UE-131  BEARING (8)
SHD-E-968  BRACKET
SHD-E-967  BRACKET
SHD-ELP-387  BUSHING
SHD-UE-409  COLLAR
SHD-E-983T  ECCENTRIC
SHD-E-983  ECCENTRIC
AD-1763  FITTING (4)
SHD-LIKE-984  KNOB
SHD-E-971  LEVER
SHD-E-57  PIN
SHD-E-1033  PIN
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHD-E-966</td>
<td>PLATE</td>
<td></td>
</tr>
<tr>
<td>SHD-E-1030</td>
<td>RING</td>
<td></td>
</tr>
<tr>
<td>SHD-E-980</td>
<td>ROD</td>
<td></td>
</tr>
<tr>
<td>SHD-UE-988</td>
<td>SCREW</td>
<td></td>
</tr>
<tr>
<td>SHD-ELP-987</td>
<td>SCREW</td>
<td></td>
</tr>
<tr>
<td>SHD-E-977</td>
<td>SHAFT</td>
<td></td>
</tr>
<tr>
<td>SHD-E-982</td>
<td>SHAFT</td>
<td></td>
</tr>
<tr>
<td>SHD-E-975</td>
<td>SHAFT</td>
<td></td>
</tr>
<tr>
<td>SHD-E-973</td>
<td>SHAFT</td>
<td></td>
</tr>
<tr>
<td>SHD-E-974</td>
<td>SHAFT</td>
<td></td>
</tr>
<tr>
<td>SHD-E-1024</td>
<td>SHEAVE</td>
<td></td>
</tr>
<tr>
<td>SHD-UE-246</td>
<td>SHEAVE</td>
<td></td>
</tr>
<tr>
<td>SHD-E-1025</td>
<td>SHEAVE (2)</td>
<td></td>
</tr>
<tr>
<td>SHD-AC-102</td>
<td>SHEAVE</td>
<td></td>
</tr>
<tr>
<td>SHD-E-1029</td>
<td>STUD</td>
<td></td>
</tr>
<tr>
<td>SHD-UE-130</td>
<td>WASHER (4)</td>
<td></td>
</tr>
<tr>
<td>BANX1DG</td>
<td>BOLT</td>
<td></td>
</tr>
<tr>
<td>BANX1DN</td>
<td>BOLT</td>
<td></td>
</tr>
<tr>
<td>BGBX1</td>
<td>KEY</td>
<td></td>
</tr>
<tr>
<td>BGAX11A</td>
<td>KEY (4)</td>
<td></td>
</tr>
<tr>
<td>BBCX1B</td>
<td>NUT (2)</td>
<td></td>
</tr>
<tr>
<td>BBCX1C</td>
<td>NUT (4)</td>
<td></td>
</tr>
<tr>
<td>BBCX1D</td>
<td>NUT (4)</td>
<td></td>
</tr>
<tr>
<td>BBCX1E</td>
<td>NUT (9)</td>
<td></td>
</tr>
<tr>
<td>BFAX1DG</td>
<td>PIN (6)</td>
<td></td>
</tr>
<tr>
<td>BFAX1DK</td>
<td>PIN (2)</td>
<td></td>
</tr>
<tr>
<td>BFDX2.1DW</td>
<td>PIN</td>
<td></td>
</tr>
<tr>
<td>BFCX1CD</td>
<td>PIN</td>
<td></td>
</tr>
<tr>
<td>BCAX1BE</td>
<td>SCREW (4)</td>
<td></td>
</tr>
<tr>
<td>BCAX1CD</td>
<td>SCREW (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCREW, (2) set, socket-hd., rd-pt., alloy-S., 5/16-18NC-3 x 5/16 in.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WASHER, lock, external teeth, reg., S., 5/16 in.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WASHER, (8) lock, external teeth, reg., S., 5/8 in.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WASHER, (6) lock, external teeth, reg., S., 7/16 in.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WASHER, (4) lock, external teeth, reg., S., 5/8 in.</td>
<td></td>
</tr>
<tr>
<td>BECX1K</td>
<td>WASHER (4)</td>
<td></td>
</tr>
<tr>
<td>BEBX1M</td>
<td>WASHER</td>
<td></td>
</tr>
</tbody>
</table>

**GEAR-DRIVE, quadrant, English, Std., assembly, consisting of:**

SHD-S-710  BUSHING
SHD-K-756  COLLAR
SHD-K-757  GEAR 32T
SHD-K-752  GEAR 76T
SHD-S-758  GEAR 62T
SHD-S-748  GEAR 80T
SHD-S-749  LEVER
SHD-S-750  STUD
SHD-S-751  STUD
SHD-K-93   WASHER (2)
NAAAX1CD  BUSHING
BBCX1C    NUT (2)
BBCX1A    NUT (2)
BSCX1AG   SCREW (2)

**GEAR, sleeve, cluster, assembly, composed of:**

SHD-K-761  COLLAR
SHD-K-717  GEAR
SHD-K-718  GEAR
SHD-K-719  GEAR
SHD-K-720  GEAR
SHD-K-721  GEAR
SHD-K-722  GEAR
SHD-K-723  GEAR
SHD-K-724  GEAR
SHD-K-708  KEY
BFCX1DE   PIN

**GEAR, sliding feed change, assembly, composed of:**

SHD-K-715-5L GEAR
SHD-K-712-5L GEAR
SHD-K-713-5L GEAR

**GEAR, stationary feed change, assembly, composed of:**

SHD-K-709-ST GEAR
SHD-K-712-ST GEAR
SHD-K-713-ST GEAR

**GEAR-DRIVE, quadrant, metric, group assembly, consisting of:**

SHD-LP-507 GE 18T
SHD-LP-508 GE 20T
SHD-S-16 GE 22T
SHD-LP-510 GE 24T
SHD-S-17 GE 26T
SHD-LP-512 GE 28T
SHD-LP-513 GE 30T
SHD-K-168 GE 32T
SHD-K-169 GE 36T
SHD-K-170 GE 40T
SHD-K-171 GE 44T
SHD-S-18 GE 44T
SHD-K-173 GE 48T
SHD-K-174 GE 52T
SHD-K-175 GE 56T
SHD-S-20 GE 80T
SHD-K-92 GE 90T
SHD-S-855B LEVER, quadrant, metric, assy.)

**GUARD, gear, lower, assembly, composed of:**

SHD-S-426 CHART
SHD-S-187 GUARD
SHD-S-15 PLATE
SHD-K-547-C PLUNGER, assembly
SHD-S-187 GUARD, gear
SHD-S-813 GUARD, gear, top

**HEADSTOCK, assembly, composed of:**

SHD-M-850 BEARING
SHD-S-33 BEARING-SET
SHD-S-34 BEARING-SET
SHD-S-71 BODY
SHD-S-63-B BRACKET, assembly
SHD-S-24 BUSHING (2)
SHD-K-66 BUSHING
SHD-K-65 BUSHING
SHD-S-24 BUSHING (2)
SHD-M-30 CAP
SHD-M-31 CAP
SHD-K-70 CLAMP
SHD-M-44 COLLAR
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTS-315</td>
<td>COVER (2)</td>
<td></td>
</tr>
<tr>
<td>SHD-S-26-C</td>
<td>FELT, w/SPRING</td>
<td></td>
</tr>
<tr>
<td>SHD-S-25-C</td>
<td>FELT, w/SPRING</td>
<td></td>
</tr>
<tr>
<td>SHD-S-67-D</td>
<td>GEAR, w/COVER GTS-301</td>
<td></td>
</tr>
<tr>
<td>SHD-S-679</td>
<td>GEAR</td>
<td></td>
</tr>
<tr>
<td>SHD-KB-466</td>
<td>GEAR</td>
<td></td>
</tr>
<tr>
<td>SHD-KB-443</td>
<td>GEAR</td>
<td></td>
</tr>
<tr>
<td>SHD-M-69-D</td>
<td>HANDLE</td>
<td></td>
</tr>
<tr>
<td>SHD-TL-47</td>
<td>NUT</td>
<td></td>
</tr>
<tr>
<td>SHD-K-38</td>
<td>PIN</td>
<td></td>
</tr>
<tr>
<td>SHD-S-934</td>
<td>PLUG (2)</td>
<td></td>
</tr>
<tr>
<td>SHD-K-547-B</td>
<td>PLUNGER, assembly</td>
<td></td>
</tr>
<tr>
<td>SHD-M-623</td>
<td>RING</td>
<td></td>
</tr>
<tr>
<td>SHD-64</td>
<td>SHAFT</td>
<td></td>
</tr>
<tr>
<td>SHD-542-B</td>
<td>SHEAVE, assembly</td>
<td></td>
</tr>
<tr>
<td>SHD-S-461</td>
<td>SPINDLE</td>
<td></td>
</tr>
<tr>
<td>SHD-L-40</td>
<td>SPRING</td>
<td></td>
</tr>
<tr>
<td>BGAX11A</td>
<td>KEY</td>
<td></td>
</tr>
<tr>
<td>BGAX5A</td>
<td>KEY (3)</td>
<td></td>
</tr>
<tr>
<td>BFDXIB</td>
<td>PIN (2)</td>
<td></td>
</tr>
<tr>
<td>BCA1DE</td>
<td>SCREW (4)</td>
<td></td>
</tr>
<tr>
<td>BCA1CD</td>
<td>SCREW (2)</td>
<td></td>
</tr>
<tr>
<td>BCA1CE</td>
<td>SCREW (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCREW, (2) set, hdl., dog-pts., S., ¼-28NF-2 x ¼</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCREW, (2) set, socket-hd., rd-pts., alloy-S., ¼-20NC-3 x ¼</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCREW, set, socket-hd., rd-pts., alloy-S., 5/16-18NC-3 x 5/16</td>
<td></td>
</tr>
<tr>
<td>BCSX1CC</td>
<td>SCREW</td>
<td></td>
</tr>
<tr>
<td>Q83AE</td>
<td>SCREW</td>
<td></td>
</tr>
<tr>
<td>RES, lock, external teeth, reg., S., ¼ in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEVER, quadrant, metric, assembly, composed of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHD-S-45</td>
<td>BUSHING</td>
<td></td>
</tr>
<tr>
<td>SHD-S-44</td>
<td>BUSHING</td>
<td></td>
</tr>
<tr>
<td>SHD-S-19</td>
<td>GEAR</td>
<td></td>
</tr>
<tr>
<td>SHD-1P-519</td>
<td>GEAR</td>
<td></td>
</tr>
<tr>
<td>SHD-S-47</td>
<td>KEY</td>
<td></td>
</tr>
<tr>
<td>SHD-S-655</td>
<td>LEVER</td>
<td></td>
</tr>
<tr>
<td>SHD-S-46</td>
<td>NUT</td>
<td></td>
</tr>
<tr>
<td>SHD-S-27</td>
<td>STUD</td>
<td></td>
</tr>
<tr>
<td>SHD-K-93</td>
<td>WASHER</td>
<td></td>
</tr>
<tr>
<td>BBCX1C</td>
<td>NUT</td>
<td></td>
</tr>
<tr>
<td>LEVER, shifter, assembly, composed of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHD-K-728</td>
<td>LEVER</td>
<td></td>
</tr>
<tr>
<td>SHD-K-727</td>
<td>LEVER</td>
<td></td>
</tr>
<tr>
<td>SHD-K-729</td>
<td>LINK</td>
<td></td>
</tr>
<tr>
<td>LEVER, tumbler, assembly, composed of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHD-K-734-C</td>
<td>BODY, tumbler, assembly</td>
<td></td>
</tr>
<tr>
<td>SHD-K98</td>
<td>BUSHING</td>
<td></td>
</tr>
<tr>
<td>SHD-K-739</td>
<td>KNOB</td>
<td></td>
</tr>
<tr>
<td>SHD-K-79</td>
<td>PIN</td>
<td></td>
</tr>
<tr>
<td>SHD-K-99</td>
<td>SPRING</td>
<td></td>
</tr>
<tr>
<td>BCTX2K</td>
<td>SCREW</td>
<td></td>
</tr>
<tr>
<td>MOTOR, elec., a-c, capacitor, single-ph., ⅜ h.p., 110/220 v, 60 c, 1725 r.p.m., composed of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KCE-BG-1</td>
<td>BEARING</td>
<td></td>
</tr>
<tr>
<td>KCE-H-10</td>
<td>BLOCK</td>
<td></td>
</tr>
<tr>
<td>KCE-C-2</td>
<td>BRACKET</td>
<td></td>
</tr>
<tr>
<td>KCE-C-4</td>
<td>CAP</td>
<td></td>
</tr>
<tr>
<td>KCE-C-5</td>
<td>CAP</td>
<td></td>
</tr>
<tr>
<td>KCE-BG-8</td>
<td>CAP</td>
<td></td>
</tr>
<tr>
<td>KCE-BG-9</td>
<td>CAP</td>
<td></td>
</tr>
<tr>
<td>KCE-R-3</td>
<td>COLLAR</td>
<td></td>
</tr>
<tr>
<td>KCE-C-1</td>
<td>CONDENSER</td>
<td></td>
</tr>
<tr>
<td>KCE-H-3</td>
<td>COVER</td>
<td></td>
</tr>
<tr>
<td>KCE-C-6</td>
<td>GROMMET (2)</td>
<td></td>
</tr>
<tr>
<td>KCE-H-6</td>
<td>INSULATOR</td>
<td></td>
</tr>
<tr>
<td>KCE-H-7</td>
<td>INSULATOR</td>
<td></td>
</tr>
<tr>
<td>KCE-B-4</td>
<td>PIN (4)</td>
<td></td>
</tr>
<tr>
<td>KCE-B-3</td>
<td>PLATE</td>
<td></td>
</tr>
<tr>
<td>KCE-B-2</td>
<td>PLATE</td>
<td></td>
</tr>
<tr>
<td>KCE-C-3</td>
<td>RESISTOR</td>
<td></td>
</tr>
<tr>
<td>KCE-BG-10</td>
<td>RING</td>
<td></td>
</tr>
<tr>
<td>KCE-R-1</td>
<td>ROTOR, assembly</td>
<td></td>
</tr>
<tr>
<td>KCE-H-13</td>
<td>SCREW (2)</td>
<td></td>
</tr>
<tr>
<td>KCE-BG-5</td>
<td>SEAL (2)</td>
<td></td>
</tr>
<tr>
<td>KCE-BG-7</td>
<td>SEAL</td>
<td></td>
</tr>
<tr>
<td>KCE-BG-6</td>
<td>SEAL</td>
<td></td>
</tr>
<tr>
<td>KCE-H-1</td>
<td>SHIELD</td>
<td></td>
</tr>
<tr>
<td>KCE-H-2</td>
<td>SHIELD</td>
<td></td>
</tr>
<tr>
<td>KCE-H-4</td>
<td>SHIELD</td>
<td></td>
</tr>
<tr>
<td>KCE-BG-2</td>
<td>SPRING</td>
<td></td>
</tr>
<tr>
<td>KCE-S-1</td>
<td>STATOR, assembly</td>
<td></td>
</tr>
<tr>
<td>KCE-H-12</td>
<td>STUD (4)</td>
<td></td>
</tr>
<tr>
<td>KCE-H-5</td>
<td>SWITCH</td>
<td></td>
</tr>
<tr>
<td>KCE-C-7</td>
<td>TUBE</td>
<td></td>
</tr>
<tr>
<td>KCE-C-10</td>
<td>WASHER (2)</td>
<td></td>
</tr>
<tr>
<td>KCE-H-9</td>
<td>WASHER (4)</td>
<td></td>
</tr>
<tr>
<td>KCE-BG-4</td>
<td>WASHER (2)</td>
<td></td>
</tr>
<tr>
<td>KCE-BG-3</td>
<td>WASHER (2)</td>
<td></td>
</tr>
<tr>
<td>CAEX1AK</td>
<td>BEARING</td>
<td></td>
</tr>
<tr>
<td>BBX1</td>
<td>KEY</td>
<td></td>
</tr>
<tr>
<td>BBX1B</td>
<td>NUT (4)</td>
<td></td>
</tr>
<tr>
<td>BBKX2C</td>
<td>NUT (4)</td>
<td></td>
</tr>
<tr>
<td>BCNX2CC</td>
<td>SCREW (2)</td>
<td></td>
</tr>
<tr>
<td>Q73SB</td>
<td>SCREW (2)</td>
<td></td>
</tr>
<tr>
<td>BCNX1FE</td>
<td>SCREW (2)</td>
<td></td>
</tr>
<tr>
<td>BCNX3FC</td>
<td>SCREW (12)</td>
<td></td>
</tr>
<tr>
<td>BBX2AA</td>
<td>WASHER (2)</td>
<td></td>
</tr>
<tr>
<td>PLUNGER, assembly, composed of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHD-K-98</td>
<td>BUSHING (3)</td>
<td></td>
</tr>
<tr>
<td>SHD-K-543</td>
<td>KNOB (3)</td>
<td></td>
</tr>
<tr>
<td>SHD-K-547</td>
<td>PIN (3)</td>
<td></td>
</tr>
<tr>
<td>SHD-K-546</td>
<td>SPRING (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCREW, (2) set, hdl., fl-pts., S., ¼-20NC-3 x ¼</td>
<td></td>
</tr>
<tr>
<td>POST, tool, group assembly, consisting of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHD-K-141</td>
<td>PLATE</td>
<td></td>
</tr>
<tr>
<td>SHD-K-140</td>
<td>POST</td>
<td></td>
</tr>
<tr>
<td>SHD-K-244</td>
<td>RING</td>
<td></td>
</tr>
<tr>
<td>SHD-K-451</td>
<td>SCREW</td>
<td></td>
</tr>
<tr>
<td>WMS-#5</td>
<td>WEDGE</td>
<td></td>
</tr>
<tr>
<td>SHD-K-147</td>
<td>RACK, for 44” and 56” beds</td>
<td></td>
</tr>
<tr>
<td>SHD-K-147-C</td>
<td>RACK, extension, for 56” bed only</td>
<td></td>
</tr>
<tr>
<td>REST, compound, assembly, composed of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHD-K-134</td>
<td>BOLT (2)</td>
<td></td>
</tr>
<tr>
<td>SHD-L-228</td>
<td>BUSHING</td>
<td></td>
</tr>
<tr>
<td>SHD-K-833</td>
<td>BUSHING</td>
<td></td>
</tr>
<tr>
<td>SHD-L-126</td>
<td>COLLAR</td>
<td></td>
</tr>
<tr>
<td>GTS-#520</td>
<td>COVER</td>
<td></td>
</tr>
<tr>
<td>SHD-L-836</td>
<td>CRANK</td>
<td></td>
</tr>
<tr>
<td>SHD-L-136</td>
<td>GIB</td>
<td></td>
</tr>
<tr>
<td>SHD-L-636</td>
<td>NUT (3)</td>
<td></td>
</tr>
<tr>
<td>SHD-L-132</td>
<td>PIN</td>
<td></td>
</tr>
<tr>
<td>SHD-L-891-G</td>
<td>SCREW, feed, group assembly</td>
<td></td>
</tr>
<tr>
<td>SHD-L-635</td>
<td>SCREW (3)</td>
<td></td>
</tr>
</tbody>
</table>
SHELDON MACHINE COMPANY, INC. CHICAGO, ILLINOIS

SHD-K-458 SCREW
SHD-K-991 SCREW
SHD-K-691 SLIDE
SHD-K-1026 SWIVEL
BGAX5A KEY
BFDX6CC PIN
BCAX1CA SCREW
SCREW, set, socket-hd., rd-pt., alloy-S., ¼-20NC-3 x ¼

SCREW, cross feed, carriage, group assembly, consisting of:
SHD-K-128 NUT
SHD-TT-830 SCREW

SCREW, feed, compound rest, group assembly, consisting of:
SHD-M-257 NUT
SHD-L-831 SCREW
SHD-K-874 SCREW, lead (for 56″ bed)
SHD-K-876 SCREW, lead (for 44″ bed)

SHEAVE, belt, type "V", assembly, composed of:
SHD-S-85 BEARING (2)
SHD-S-452 BODY
SHD-S-467 GEAR
SCREW, (2) set, hdl., dog-pt., S., ¼-28NF-2 x ¾
SCREW, set, socket-hd., rd-pt., allow-S., 5/16-18NC-3 x 5/16

SUPPORT, eccentric lever, motor drive, assembly, composed of:
SHD-S-91 BAR
SHD-S-87 BRACKET
SHD-S-88 HINGE

SHD-S-90 LEVER
SHD-S-89 LINK
SHD-S-92 SCREW
SHD-S-93 SCREW (3)

SWITCH, elec., motor-starting, manual, thermal overload protected, 1½ h.p., 110 v, a-c, w/overload heaters
SWITCH, elec., reversing drum, 3 pole, 1 h.p., 110/220 v, a-c (Furnas Electric style R-1A)

TAILSTOCK, assembly, composed of:
SHD-K-74 BASE
SHD-K-72 BODY
SHD-K-212 BUSHING
SHD-K-78 BUSHING
SHD-K-80 CLAMP
GTS-#521 COVER
SHD-K-570 HANDLE
SHD-L-215 HANDWHEEL
SHD-K-285 NUT
SHD-K-560 SCREW
SHD-K-75 SPINDLE
SHD-K-584 STUD
SHD-K-93 WASHER
BANX1CM BOLT (2)
BGAX5A KEY
BOLT, sq-hd., unfin., S., ½-13NC-2 x 3½
BBAX1C NUT
NUT, extra-hv., hex., s-fin., ½-13NC-2
SCREW, set, socket-hd., rd-pt., alloy-S., 5/16-18NC-3 x 5/16

WIRE, elec., sgle-cond., sol., No. 14, 72 in. (see WIRE, type A1)

WIRE, type A1, sgle-cond., sol., No. 14